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Abstract
In Downarowicz and Lacroix (2006 Law of series) and Downarowicz et al (2007
ESAIM P&S), the authors show that for every ergodic aperiodic dynamical
system, the process generated by a typical partition has the following property:
the zero function is a pointwise limit, along a subsequence of lengths nk of upper
density 1 and with probabilities increasing to 1, of the distribution functions
of the normalized (i.e. appropriately scaled) hitting times to cylinder sets of
lengths nk . Of course, this is the smallest possible limit distribution. We
indicate two classes of systems where at least one more limit distribution
coexists, and occurs with the same ‘strength’ (i.e. for every typical process,
along a subsequence of lengths of upper density 1 and with probabilities
increasing to 1): in α-mixing systems this is the exponential limit distribution
(the largest possible in systems of positive entropy), and in adding machines this
is the distribution L(t) = max{0, min{1, t}} (the largest possible distribution
for hitting times).

Mathematics Subject Classification: 37A25, 37A05, 60G10

1. Introduction

Since the late seventies, when Lempel and Ziv introduced an algorithm for data compression
based on recurrence of cylinder sets, the statistics of return times in dynamical systems,
especially for cylinder sets, has been intensively studied. The Ornstein–Weiss theorem [3]
establishes that if µ is an ergodic measure and τn(x) denotes the first return time of x to its
own cylinder of length n then

1

n
log τn(x) → hµ(T )
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µ-almost surely, where hµ denotes the entropy of µ. But the logarithmic expression in the
above statement is insensitive to subexponential variations of τn(x). Thus, this theorem says
nothing about the ‘shape’ of the distribution function of the return times. If we restrict our
attention to one cylinder set B then the Kac theorem [4] assures that the expected value of the
return time to B equals precisely 1/µ(B), but still the proportions between the return times
at various points of B remain unregulated. To capture them one has to study the distribution
functions of the normalized return time to B, τ̃B = µ(B)τB , a random variable defined on the
cylinder B, with expected value always equal to 1.

One of the natural questions asked in this context is whether the distribution functions of
the normalized return times to cylinder sets converge as the length of the cylinders increases
to infinity. Is coexistence of several limit distributions (achieved on different sets of cylinders
or along different subsequences nk of lengths) possible in an ergodic process? What limit
distributions can appear in this role? Of course, we are only interested in ‘observable’
limit distributions, i.e. achieved on collections of nk-cylinders whose joint measure does not
decay to 0 as nk → ∞. The simple example of an independent process (the full shift)
shows that without such restriction all imaginable limit distributions are possible in one
system.

There is a simple approximative integral relation between the distribution of the normalized
return time and that of the normalized hitting time (see next section for precise definitions;
see [5] for the proof of the relation), which becomes strict as the lengths of cylinders grow
to infinity. So, the results concerning limit distributions for return times have equivalent
translations in terms of analogous distributions for the hitting times. Both approaches are
mixed in the literature depending on the convenience of formulation.

Quite a long and impressive list of works on the subject of limit distributions demonstrates
two major kinds of behaviour:

First, the exponential distribution E(t) = max{0, 1−e−t } was proved to be a limit distribution
of the hitting (and also return) times in Markov chains by Pitskel in [6], and then the same
limit distribution was found in the classes of φ-mixing and exponentially α-mixing processes
by Galves and Schmitt [7] and Abadi [8]. In the above classes, the fast correlation decay is
a reason why these processes possess the limit distribution characteristic for i.i.d. processes.
For a more complete list of papers on the exponential limit distribution of the return times
see the survey [9]. The limit distribution E in these systems is unique for the process, i.e. it
is achieved almost everywhere and along the full sequence n of lengths, leaving no room for
any other (observable) limit distributions. Probably the most general result concerning limit
distributions in all processes of positive entropy was obtained by Downarowicz and Lacroix [1]:
all observable limit distributions of the hitting times to cylinders are bounded from above by
the exponential distribution E.

A second group of results were obtained for zero-entropy processes. In this case the
correlation between events in the past and in the future seems to cause that limit distributions of
the return times are distributions of discrete finitely valued random variables. This behaviour
is characteristic for periodic systems. Coelho and de Faria find such limit distributions in
homeomorphisms of the unit circle [10], in particular in irrational rotations and Sturmian
shifts (for circle maps intervals were considered instead of cylinders). Durand and Maass
have obtained similar results in minimal low-complexity Cantor systems [11]. Nevertheless,
also other examples of limit distributions of the return times were found in the class of
zero-entropy processes [12–14]. In [14], it is even proved that every distribution of a non-
negative random variable with expected value less than or equal to one can be obtained as
a limit distribution of the return times in a process generated by a partition of a rank-one
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system along a sequence of cylinders. Unfortunately, all the results demonstrating the
existence of the limit distributions in certain processes either deal with non-observable limits
or observability is not proved. The only exception is a process constructed in [12], where
the characteristic function 1[0,∞) is the unique limit distribution for the return times, i.e.
piecewise linear distribution L(t) = max{0, min{1, t}} is the unique distribution for the hitting
times.

Now consider a measure preserving transformation on the standard probability space.
This object gives rise to many processes, each generated by some finite partition of the space.
Downarowicz and Lacroix asked about a limit distribution of the hitting times, which would
be common to all ‘typical’ processes, i.e. processes generated by ‘typical’ partitions in a given
ergodic system (here ‘typical’ means belonging to a residual set in the complete metric on
the set of partitions into at most m elements). They proved [1] that for every non-periodic
ergodic system of positive entropy, the zero function is a limit distribution of the hitting times
to cylinders achieved along a subsequence of lengths of upper density 1 and with probabilities
increasing to 1, in every typical process defined on this system. Recently the authors have
extended their result to arbitrary aperiodic ergodic systems (also of entropy zero; [2]). The zero
limit distribution for hitting times has an interesting interpretation: very long cylinders (of the
selected lengths) are visited in ‘clusters’ (with relatively very short gaps inside each cluster)
separated by huge long pauses. For this reason, results of this kind are given the nickname
‘the law of series’.

In this paper we follow the point of view of Downarowicz and Lacroix and we focus on
limit distributions appearing with probability increasing to 1 in all typical processes on a given
dynamical system. Because the zero limit distribution is achieved only along a subsequence
of lengths, there is still room for other limit distributions. Moreover, because several disjoint
subsequences may have upper density one, the other limit distributions may be achieved along
sequences of lengths with the same upper density as the zero limit distribution. In theorem 1,
we prove that the exponential distribution E is another limit distribution (for both the return
and hitting times) achieved in this manner in every typical process generated on any α-mixing
system (i.e. in a system having an α-mixing generating partition). Recall that positive entropy
and the Downarowicz–Lacroix theorem imply that E is the largest limit distribution function
that could be expected in this case. In other words, in this class, in a typical process we
find both extremities (appearing with equal strength): the smallest and largest possible limit
distribution functions in positive entropy.

The above result is obtained with the help of another one, which has its own interest; we
prove that for the α-mixing process itself (i.e. without perturbing the generating partition)
the exponential distribution is the unique limit distribution (i.e. achieved along the full
sequence of lengths; see theorem 4). This generalizes the aforementioned analogous
results obtained by Abadi, Galves and Schmitt for φ-mixing and exponentially α-mixing
processes.

In the second part of our paper, we perform a similar search for alternative typically
occurring limit distributions in certain zero-entropy systems, namely, in adding machines. In
theorem 2, we prove that in this case the piecewise linear distribution function L is such a limit
distribution, again achieved along a sequence of lengths of upper density 1 and with probability
increasing to 1. This is the largest distribution function admissible for the hitting time in any
process (the corresponding distribution of return times is concentrated at 1 and corresponds to
visits in the cylinder with approximately equal gaps of time). So, once again, here, in a typical
process, we have the coexistence of two extremities: the smallest and the largest of all possible
limit distributions.
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2. Preliminaries and the main theorems

Let (X, B, µ, T ) be a dynamical system on a standard probability space. For U ⊂ X with
µ(U) > 0, Poincaré recurrence theorem states that the variable

τU (x) = inf{k � 1 : T kx ∈ U}
is µU -a.e. well defined, where µU is the conditional measure µ on U . The corresponding
random variable (on U ) is called the return time. In ergodic systems the same formula is
well defined µ almost everywhere and the corresponding random variable (on X) is called the
hitting time. Because, by the Kac theorem, the expected value of τU with respect to µU equals
1/µ(U), the random variable µ(U)τU has expected value 1. This variable will be called the
normalized return time. By analogy, the same variable considered on X will be called the
normalized hitting time.

We define

F̃U (t) = 1

µ(U)
µ({x ∈ U : µ(U) · τU (x) � t})

and

FU(t) = µ({x ∈ X : µ(U) · τU (x) � t}).
Since there is an explicit relation between the distribution functions of the return and the

hitting times, which can be deduced from the observation of the skyscraper above the set U

(see also [5]), we will use either one, depending on which one is more convenient in a given
context.

Before we state the main theorems, we introduce some notation. Let m denote a fixed
integer. We consider a family P of at most m-element partitions P of X. There is a natural
pseudometric on P, called the Rokhlin metric

d(P, R) = 1 − sup

{∑
P∈P ′

µ(P ∩ f (P ))

}
,

where the supremum is taken over all one-to-one functions f with a domain P ′ ⊆ P and range
f (P ′) ⊆ R. This pseudometric identifies partitions modulo measure zero and it is a metric on
the corresponding factor space (we will also denote it by P). Rokhlin metric endows P with
a topology of a Polish space.

There is also a lattice structure (P, ≺) where ≺ is defined as

P ≺ R iff ∀R∈R∃P∈P R ⊂ P (mod µ).

We then say that P is coarser than R. Every two partitions have a supremum P ∨R = {P ∩R :
P ∈ P, R ∈ R} which is called the join of partitions P and R. We use the following notation

Pn =
n−1∨
i=0

T −iP.

Elements of Pn are called cylinders of lengths n (with respect to the partition P). For x ∈ X

by Pn(x) we understand a cylinder from Pn that contains a point x.
For a process (X, B, µ, T , P), a right-continuous non-decreasing function F : R → [0, 1]

will be called a substantial limit distribution for the return, respectively, hitting times, if there
exists a set N (P) ⊂ N of upper density one and families of cylinders Rn ⊆ Pn, n ∈ N (P),
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satisfying the following conditions:

• (µ(
⋃

Rn))n∈N (P) converges to 1,
• for every sequence of cylinders (Bn)n∈N (P), Bn ∈ Rn, the distribution functions F̃Bn

,
respectively, FBn

converge weakly to F .

In the definition, we use the notion of weak convergence of distribution functions, which
is defined in the standard way: the distribution functions Fk : R → [0, 1], k ∈ N, converge
weakly to a non-decreasing right-continuous function F : R → [0, 1] if limk→∞ Fk(t) = F(t)

for all continuity points t ∈ R of F . A useful fact about this convergence is that we can
metrize it. Let us denote the set of all non-decreasing right-continuous functions from R to
[0, 1] by F . Fix a Borel probability measure ν on R which is equivalent to the Lebesgue
measure (the measures have the same Borel sets of measure 0). The metric is then generated
by the L1

ν(R)-norm

dν(F, G) =
∫ ∞

−∞
|F(t) − G(t)| dν(t).

This metric is, of course, smaller than the uniform distance.
We note that the most commonly used metric to metrize weak convergence in the space

of distribution functions is the Prokhorov metric. Unfortunately, this metric extended to F
does not metrize weak convergence any more. The convergence in that metric is stronger than
weak convergence because it requires pointwise convergence in both infinities, i.e. the limit
must again be a distribution function. This is the reason why we use another metric, more
appropriate for our purpose.

A partition P is α-mixing if the function α(l) defined below converges to 0 as l goes to
infinity

α(l) = sup
n�1

sup
B∈Pn

sup
C∈P∞

|µB(T −(n+l+1)C) − µ(C)|,

where P∞ = σ(
⋃∞

n=1 Pn) is the smallest σ -algebra containing all cylinders of all lengths and
the supremum is taken over the sets B, such that µ(B) > 0.

In order to state our main theorems in a more readable form, we introduce a notion
of ‘typicality’ in the Polish space P. We say that a function F ∈ F is a substantial limit
distribution for the return times in a process of system X generated by a typical partition
P ∈ P if there exists a residual subset P′ ⊆ P such that, for every partition P ∈ P′, F is a
substantial limit distribution for return times in the process (X, B, µ, T , P).

Theorem 1. Let (X, B, µ, T ) possess a finite generating α-mixing partition. Then E(t) =
max(0, 1 − e−t ) is a substantial limit distribution for the return times in a process generated
by a typical partition.

Theorem 2. Let (X, B, µ, T ) be an adding machine. Then the function 1[1,∞) is a substantial
limit distribution for the return times in a process generated by a typical partition.

In the case of an adding machine the corresponding substantial limit distribution of the
hitting times is equal to the piecewise linear function L.

3. The exponential limit distribution

In [8, 9], Abadi shows that E is a unique limit distribution for every φ-mixing and exponentially
α-mixing process. We generalize this result for every α-mixing process.
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First, let us mention that every α-mixing process has positive entropy. This is a direct
consequence of the upper estimate of measures of cylinders given in [8, lemma 1]. The
α-mixing property ensures ergodicity of the process.

The main part of the proof that E is the unique limit distribution for all α-mixing
processes is contained in the proof of proposition 3 which states that the difference between the
distribution of the return times and the distribution of the hitting times to a cylinder is small,
when the length of the cylinder is big enough.

Proposition 3. Let (X, A, µ, T , P) be an α-mixing process. Then there exist families of
cylinders Rn ∈ Pn, n ∈ N, increasing in measure to 1, such that supB∈Rn

||FB − F̃B ||sup

tends to zero, when n goes to infinity.

Proof. We must prove that for every ε > 0, there is n0 ∈ N such that for every n � n0

there is a family of cylinders Rn ∈ Pn which satisfies the conditions µ(
⋃

Rn) � 1 − ε and
||FB − F̃B ||sup < ε, for every B ∈ Rn.

Fix ε > 0. Let k be such that α(k) < ε/3. For n ∈ N and x ∈ X denote the element in
Pn which contains x by Pn(x), and

Xn = {x ∈ X; τPn(x)(x) � n + k},
R′

n = {B ∈ Pn; 0 < (n + k)µ(B) < ε/3},
Rn = {B ∈ R′

n; µB(Xn) < ε/3}.
By the Shannon–MacMillan–Breiman theorem (see, e.g., [15]), the measure of the union⋃

R′
n tends to 1, whenever n increases to infinity. Thus, there is n1 ∈ N such that for every

n � n1, the measure of
⋃

R′
n is bigger than 1 − ε/2.

In addition, by the Ornstein–Weiss theorem [3], the measure of Xn tends to zero, when n

increases to infinity. Hence, there is n0 � n1, such that for every n � n0, µ(Xn) < ε2/6. Let
n � n0. Then

µ

( ⋃
Rn

)
> 1 − ε/2 −

∑
B∈R′

n\Rn

µ(B) = 1 − ε/2 −
∑

B∈R′
n\Rn

µ(B ∩ Xn)

µB(Xn)

� 1 − ε/2 −
∑

B∈R′
n\Rn

µ(B ∩ Xn)

ε/3
� 1 − ε/2 −

∑
B∈Pn

µ(B ∩ Xn)

ε/3

= 1 − ε/2 − µ(Xn) · 3/ε > 1 − ε.

It remains to prove that ||FB − F̃B ||sup is less than ε, for every B ∈ Rn. Let B ∈ Rn.
Since the functions FB and F̃B are constant on every interval [mµ(B), (m + 1)µ(B)), m ∈ N,
for every t < (n + k + 1)µ(B) we have

|FB(t) − F̃B(t)| � |FB(t)| + |F̃B(t)| � FB((n + k)µ(B)) + F̃B((n + k)µ(B))

� µ

(
n+k⋃
i=1

T −iB

)
+ µB{τB � (n + k)}

� (n + k)µ(B) + µB{τB � (n + k)} < ε/3 + ε/3 < ε.

If (n + k + 1)µ(B) � t , then there is a natural m such that (n + k + m)µ(B) � t <

(n + k + m + 1)µ(B). Using the following equality

{τB � n + k + m} = {τB � (n + k)} ∪
n+k+m⋃

j=n+k+1

T −jB,
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we get

|FB(t) − F̃B(t)| = |FB((n + k + m)µ(B)) − F̃B((n + k + m)µ(B))|

�
∣∣∣∣µ{τB � (n + k + m)} − µ

( n+k+m⋃
j=n+k+1

T −jB

)∣∣∣∣

+

∣∣∣∣µ
( n+k+m⋃

j=n+k+1

T −jB

)
− µB

( n+k+m⋃
j=n+k+1

T −jB

)∣∣∣∣

+

∣∣∣∣µB

( n+k+m⋃
j=n+k+1

T −jB

)
− µB{τB � (n + k + m)}

∣∣∣∣
� µ{τB � (n + k)} + α(k) + µB{τB � (n + k)}
� (n + k)µ(B) + α(k) + µB{τB � (n + k)} < 3 · ε/3 = ε. �

Theorem 4. Let (X, A, µ, T , P) be an α-mixing process. Then E is the unique limit
distribution for the hitting times.

Proof. We need to prove that for every ε > 0, there is n0 ∈ N such that for every n � n0

there is a family of cylinders Rn ∈ Pn which satisfies the conditions µ(
⋃

Rn) � 1 − ε and
dν(FB, E) < ε, for every B ∈ Rn.

Let us mention the paper [5]. There Haydn et al proved that in every aperiodic ergodic
system, ||GB − FB ||sup � µ(B), where B is any set of positive measure and GB is a real
function defined as follows

GB(t) =



0, iff t < 0,∫ t

0
1 − F̃B(s) ds, iff t � 0.

In other words, GB is right differentiable everywhere on R and (GB)′+ = 1− F̃B . If we denote
f = GB − E and use the equality E′ = 1 − E, we get

f + f ′
+ = GB − E + 1 − F̃B − (1 − E) = GB − FB + FB − F̃B

Since f is bounded, continuous, equal to zero for negative numbers and limt→∞ f (t) = 0,
so f has a global maximum and minimum. Denote the point where the maximum is by x0.
There is a sequence xn ↗ x0, such that f ′

+(xn) � 0 (if it was not, there would be an interval
(a, x0) on which the right derivative of f would be strictly negative and then x0 would not be
a maximum). Hence

sup
t∈R

(f (t) + f ′
+(t)) � sup

n∈N

(f (xn) + f ′
+(xn)) � lim

n→∞ f (xn) = f (x0) = sup
t∈R

f (t).

Thus, for B ∈ Rn we have

‖FB − E||sup � ‖f ‖sup + ‖FB − GB‖sup � ‖f + f ′
+‖sup + ‖FB − GB‖sup

� 2‖GB − FB‖sup + ‖FB − F̃B‖sup � 2µ(B) + ‖FB − F̃B‖sup.

The previous proposition concludes the proof. �
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Proof of theorem 1. We use the ideas from [1]. For a given distribution function F , ε > 0
and natural N , we define the following set of partitions

BN,ε(F ) =
{
P ∈ P : for every n ∈ [N, N2],

µ
(⋃

{B ∈ Pn; dν(FB, F ) < ε}
)

> 1 − ε

}
It is easy to see that for every distribution function F , BN,ε(F ) is open in P. Of course,

the sum Bε(F ) = ⋃
N�1 BN,ε(F ) is also open.

The next step of the proof is to show that if a system (X, B, µ, T ) possesses a generating
α-mixing partition M, then the sets Bε(E) are dense, for all ε > 0. Because Mn, n ∈ N,
increase to B, every partition from P can be arbitrarily well approximated by the m-element
partition coarser than some Mn. In other words, the partitions which are coarser than some
Mn form a dense set in P. Every partition consisting of elements which are sums of sets of
an α-mixing partition is also α-mixing. By the previous proposition, E is the unique limit
distribution for the hitting times in such processes. Thus, such partitions belong to Bε(E), for
every ε > 0. We get that Bε(E) are open dense sets and ∩n∈NBεn

(E) is a Gδ dense set, for
any sequence (εn)n∈N, decreasing to zero.

At the end, consider a sequence (εn)n∈N, decreasing to zero, and some partition P ∈
∩n∈NBεn

(E). For a fixed ε > 0, we will prove that there are infinitely many N ∈ N, such
that P ∈ BN,ε(E). Assume that there are only finitely many integers N ∈ N, such that
P ∈ BN,ε(E). Denote the finite set of all such integers N by K . Let ε′ be a minimum of
dν(FB, E) taken over all B ∈ Pn, n ∈ [N, N2], N ∈ K . Since all these distances are positive
(FB is a distribution of a discrete random variable, whereas E is continuous), so ε′ is. But
from the definition, we get that P does not belong to any Bεn

(E), for εn < ε′. This is a
contradiction. The fact that the union of infinitely many intervals [N, N2] has upper density 1
concludes the proof. �

4. Adding machines

Let (pi)i∈N be an increasing sequence of natural numbers such that p0 � 2 and pi divides
pi+1, for every i ∈ N,

X =
{

(xi)i∈N ∈
∞∏
i=0

{0, 1, . . . , pi − 1}; xi+1 = xi mod pi, for every i ∈ N

}
.

This set becomes an Abelian group under the operation (x + y)i = xi + yi mod pi ,
x, y ∈ X. The operation is continuous with respect to the product of discrete topologies on
sets {0, 1, . . . , pi − 1}, i ∈ N. In this setting, X is a topological Abelian group. We denote the
family of Borel subsets of X by B and Haar measure on X by µH . Haar measure is, of course,
invariant under the translation L : X → X, defined by the equation L(x) = x + (1, 1, . . .).

Since the orbit of (1, 1, . . .) under the translation L is dense in X, the dynamical system
(X, B, µH , L) is ergodic (see [16]). The system is called an adding machine and (pi)i∈N is its
periodic structure.

For i ∈ N, let us define the partition Pi of X as follows

Pi = {Pi,s; s ∈ {0, 1, . . . , pi − 1}}; Pi,s = {(xj )j∈N ∈ X; xi = s}.
By the definition, Pi+1 is finer than Pi , for every i ∈ N. Moreover, union of all these

partitions generates the σ -field B. Thus, every partition can be approximated in the Rokhlin
metric by a partition coarser than some Pi .
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Proof of theorem 2. The proof is similar to the proof of theorem 1. Let (X, B, µH , L) be
an adding machine with a periodic structure (pi)i∈N. Let R be an m-element partition of X,
which is coarser than some Pi . In other words, every set in partition R is a union of sets Pi,s ,
0 � s < pi . By the definition, L−pi (Pi,s) = Pi,s for every 0 � s < pi . Hence, L−pi (R) = R
and Rn = Rpi , for every n � pi . Let n � pi . Since the adding machine is ergodic, Rn can
be written as a cycle of iterated images

Rn = {Li(B); 1 � i � #Rn}, for any B ∈ Rn.

Thus, the distribution for the return times to any B ∈ Rn is equal to 1[1,∞) and R ∈ Bε(1[1,∞)).
Since the partitions Pi , i ∈ N increase to B, partitions R’s are dense in P and so Bε(1[1,∞))

is, for every ε > 0.
Let us consider a residual set ∩n∈NBεn

(1[1,∞)), where (εn)
∞
n=1 is an arbitrary sequence

decreasing to zero. A partition P from this set generates either a periodic or an aperiodic
process. In the periodic case, there is some n0, such that for every n � n0, Pn can be written as
a cycle of iterated images of a set B ∈ Pn. Therefore, P ∈ BN,ε(1[1,∞)) for every ε > 0 and
N � n0. Let P generate an aperiodic process. Then FB differs from 1[1,∞), for every cylinder
B, but in a similar way as in the proof of theorem 1 we obtain that P belongs to BNn,εn

(1[1,∞))

for some increasing sequence (Nn)
∞
n=1 of natural numbers and sequence (εn)

∞
n=1 of positive

real numbers decreasing to zero. �
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